Tame linear extension operators for smooth Whitney functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation and Extrapolation of Smooth Functions by Linear Operators

Let C(R) be the space of functions on R whose m derivatives are Lipschitz 1. For E ⊂ R, let C(E) be the space of all restrictions to E of functions in C(R). We show that there exists a bounded linear operator T : C(E)→ C(R) such that, for any f ∈ C(E), we have Tf = f on E.

متن کامل

Extension of Linear Selectors of Linear Fuzzy Multivalued Operators

We prove an extension theorem for linear selectors of linear fuzzy multivalued operators.

متن کامل

A Linear Extension Operator for Whitney Fields on Closed O-minimal Sets

We construct a natural continuous linear extension operator for CWhitney fields (p finite) on closed o-minimal subsets, different from the Whitney’s one [W], based on the geometry of these sets. Introduction. By an o-minimal subset of an Euclidean space R we will mean a subset definable in any o-minimal structure on the ordered field of real numbers R (see [D, DM] for the definition and fundame...

متن کامل

Tame functions are semismooth

Superlinear convergence of the Newton method for nonsmooth equations requires a “semismoothness” assumption. In this work we prove that locally Lipschitz functions definable in an o-minimal structure (in particular semialgebraic or globally subanalytic functions) are semismooth. Semialgebraic, or more generally, globally subanalytic mappings present the special interest of being γ -order semism...

متن کامل

Extension of a theorem of Whitney

It is shown that every planar graph with no separating triangles is a subgraph of a Hamiltonian planar graph; that is, Whitney’s theorem holds without the assumption of a triangulation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2011

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2011.04.008